REAL ANALYSIS HOMEWORK 4

KELLER VANDEBOGERT

1. PROBLEM 1

By definition, liminf A4, = U ﬂ A, := A. Hence, suppose that
n—0o0
n=1k>n

x € A. By definition, there exists n such that z € ﬂkz” Ay. However,
by definition of intersection, this means that for all k > n, z € A,.
Since n is finite, the result follows immediately, since there exists n
such that x € A, for all k£ > n, or in other words, the set of positive

integers m for which = ¢ A,, is finite.

2. PROBLEM 2

To show lim,,_,~ A,, := A exists, we must show that lim inf,_,. A, :=
A~ and limsup,,_, A, := A" exist and are equal.

Suppose now that x € A~. Then, by the result of problem 1, z €
(—1/n,1 —1/n) for infinitely many n. Letting n — oo, however, this
implies that z € (0,1), so A~ C (0,1). To show the reverse inclusion,
suppose that = ¢ A~. Then, there is some subsequence n; such that
x & (1/ng, 1 — 1/nyg) for all k € Z. Letting k — oo, we see that
x ¢ (0,1), so that A~ = (0,1) by contraposition.

Suppose now that z € A™. Then, as shown in class, z € A,, for infin-
itely many n. In other words, there exists a subsequence nj such that

x € (—1/ng, 1 —1/ny). Letting k — oo, we see x € (0,1). Conversely,
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if z € (0,1), then there exists 0 such that Bs(z) C (0,1). Now, find N
such that 1/N < §. Then = € A, for all n > N, so that x € A" (since
x € A, for infinitely many n), and A* = (0, 1).

Thus, by the above we see that lim,, .., 4, = (0, 1).

3. PROBLEM 3

Suppose that f, — f pointwise and define the following sets:

F(it)={zeR: f(z) <t}

G(t) == ﬂ U m{xER: folx) <t+1/m}

m=1 k=1 n=~k

Then if x € R, given any integer m, there is k such that |f,(z) —
f(z)] < 1/m for all n > k by definition of pointwise convergence.
Now, suppose that x € F(t), so that f(z) < ¢t. Then, we see that
fa(x) < t+1/m. However, this shows that for all m, there exists k
such that for all n > k, f,(z) < t+ 1/m. But this is precisely the
condition for x € G(t), so F(t) C G(t).

Conversely, let © € G(t). Then by definition, for all m, there exists
k such that for all n > k, f.(x) < t+ 1/m. Letting n — oo, we see
that f(x) <t+ 1/m, and since the left hand side of this inequality is
independent of m, let m — oo on the right to conclude f(z) < t¢. Thus

x € F(t), so that F(t) = G(t), as desired.

4. PROBLEM 4

Let € > 0 and enumerate the elements of E as {1, 22, ... }. For each

¢ ) . Obviously

xr, € F, associate the interval I,, := (xn ~ onr1 Tn+ il

the sets I, constitute an open cover of E, so that
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Ey<m (| JL) <Y m (1) = Zzin =

Since € is arbitrary, we conclude m*(E) < 0, so m*(E) = 0.

5. PROBLEM 5

(a). Let {I,} be an open cover of E. Then, the set of translates {I,,+h}
for any h € R is an open cover of E + h, with m*(I,, + h) = m*(1,),
since if I, = (a,b), then I, + h = (a + h,b + h) has outer measure
b+h—(a+h)=0b—a=m*(1,). Using this, given € > 0, we can find

an open cover {I,} such that

E)+e> im*([n) = im*([n +h) >m*(E+ h)

Since € is arbitrary, m*(E) > m*(E+h). To find the reverse inequal-
ity, merely note that £ = (E' 4+ h) — h. Hence defining E' := E + h, we
have that m*(E") > m*(E"—h). But this just says m*(E+h) > m*(FE),
so they are in fact equal.

For m*(F) infinite, we find by similar reasoning that m*(E + h) >
m*(FE), and hence m*(E + h) is infinite as well.

(b). Suppose that E is measurable. Then, given another set T, note
that (T+h)N(E+h) =TNE+h, and (E+ h)¢ = E°+ h. Using this

and the translation invariance just proved in part (a):

m*(T+h) <m*((T+h)N(E+h)+m"((T+h) N (E+ h))

(
m* (T'NE+h)+m*(T N E°+ h)
m* (T NE)+m*(TNE°)

(

= m*(T) = m*(T + h)
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And we see that (E+h) is measurable (indeed, this is actually equiv-

alence by identical reasoning as in part (a)).



