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1. Problem 1

By definition, lim inf
n→∞

An =
∞⋃
n=1

⋂
k≥n

Ak := A. Hence, suppose that

x ∈ A. By definition, there exists n such that x ∈
⋂
k≥nAk. However,

by definition of intersection, this means that for all k ≥ n, x ∈ Ak.

Since n is finite, the result follows immediately, since there exists n

such that x ∈ Ak for all k ≥ n, or in other words, the set of positive

integers m for which x /∈ Am is finite.

2. Problem 2

To show limn→∞An := A exists, we must show that lim infn→∞An :=

A− and lim supn→∞An := A+ exist and are equal.

Suppose now that x ∈ A−. Then, by the result of problem 1, x ∈

(−1/n, 1 − 1/n) for infinitely many n. Letting n → ∞, however, this

implies that x ∈ (0, 1), so A− ⊂ (0, 1). To show the reverse inclusion,

suppose that x /∈ A−. Then, there is some subsequence nk such that

x /∈ (1/nk, 1 − 1/nk) for all k ∈ Z. Letting k → ∞, we see that

x /∈ (0, 1), so that A− = (0, 1) by contraposition.

Suppose now that x ∈ A+. Then, as shown in class, x ∈ An for infin-

itely many n. In other words, there exists a subsequence nk such that

x ∈ (−1/nk, 1− 1/nk). Letting k →∞, we see x ∈ (0, 1). Conversely,
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if x ∈ (0, 1), then there exists δ such that Bδ(x) ⊂ (0, 1). Now, find N

such that 1/N < δ. Then x ∈ An for all n ≥ N , so that x ∈ A+ (since

x ∈ An for infinitely many n), and A+ = (0, 1).

Thus, by the above we see that limn→∞An = (0, 1).

3. Problem 3

Suppose that fn → f pointwise and define the following sets:

F (t) := {x ∈ R : f(x) ≤ t}

G(t) :=
∞⋂
m=1

∞⋃
k=1

∞⋂
n=k

{x ∈ R : fn(x) < t+ 1/m}

Then if x ∈ R, given any integer m, there is k such that |fn(x) −

f(x)| < 1/m for all n ≥ k by definition of pointwise convergence.

Now, suppose that x ∈ F (t), so that f(x) ≤ t. Then, we see that

fn(x) < t + 1/m. However, this shows that for all m, there exists k

such that for all n ≥ k, fn(x) < t + 1/m. But this is precisely the

condition for x ∈ G(t), so F (t) ⊂ G(t).

Conversely, let x ∈ G(t). Then by definition, for all m, there exists

k such that for all n ≥ k, fn(x) < t + 1/m. Letting n → ∞, we see

that f(x) ≤ t + 1/m, and since the left hand side of this inequality is

independent of m, let m→∞ on the right to conclude f(x) ≤ t. Thus

x ∈ F (t), so that F (t) = G(t), as desired.

4. Problem 4

Let ε > 0 and enumerate the elements of E as {x1, x2, . . . }. For each

xn ∈ E, associate the interval In :=
(
xn−

ε

2n+1
, xn+

ε

2n+1

)
. Obviously

the sets In constitute an open cover of E, so that
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m∗(E) ≤ m∗(
∞⋃
n=1

In) ≤
∞∑
n=1

m∗(In) =
∞∑
n=1

ε

2n
= ε

Since ε is arbitrary, we conclude m∗(E) ≤ 0, so m∗(E) = 0.

5. Problem 5

(a). Let {In} be an open cover of E. Then, the set of translates {In+h}

for any h ∈ R is an open cover of E + h, with m∗(In + h) = m∗(In),

since if In = (a, b), then In + h = (a + h, b + h) has outer measure

b+ h− (a+ h) = b− a = m∗(In). Using this, given ε > 0, we can find

an open cover {In} such that

m∗(E) + ε >
∞∑
n=1

m∗(In) =
∞∑
n=1

m∗(In + h) ≥ m∗(E + h)

Since ε is arbitrary, m∗(E) ≥ m∗(E+h). To find the reverse inequal-

ity, merely note that E = (E+h)−h. Hence defining E ′ := E+h, we

have that m∗(E ′) ≥ m∗(E ′−h). But this just says m∗(E+h) ≥ m∗(E),

so they are in fact equal.

For m∗(E) infinite, we find by similar reasoning that m∗(E + h) ≥

m∗(E), and hence m∗(E + h) is infinite as well.

(b). Suppose that E is measurable. Then, given another set T , note

that (T +h)∩ (E+h) = T ∩E+h, and (E+h)c = Ec +h. Using this

and the translation invariance just proved in part (a):

m∗(T + h) ≤ m∗((T + h) ∩ (E + h)) +m∗((T + h) ∩ (E + h)c)

= m∗(T ∩ E + h) +m∗(T ∩ Ec + h)

= m∗(T ∩ E) +m∗(T ∩ Ec)

= m∗(T ) = m∗(T + h)

(5.1)
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And we see that (E+h) is measurable (indeed, this is actually equiv-

alence by identical reasoning as in part (a)).


